1 5 N ov 2 00 7 Global regularity for the 3 D Navier - Stokes and the 3 D Euler equations

نویسنده

  • Dongho Chae
چکیده

We prove the global regularity for both of the 3D Navier-Stokes equations and the 3D Euler equations on R for initial data v0 ∈ H (R). 1 Main Result We are concerned on the following Navier-Stokes equations(Euler equations for ν = 0) describing the homogeneous incompressible fluid flows in R. (NS)ν 

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N ov 2 00 8 LAGRANGIAN STRUCTURES FOR THE STOKES , NAVIER - STOKES AND EULER EQUATIONS by Jacky Cresson & Sébastien Darses

— We prove that the Navier-Stokes, the Euler and the Stokes equations admit a Lagrangian structure using the stochastic embedding of Lagrangian systems. These equations coincide with extremals of an explicit stochastic Lagrangian functional, i.e. they are stochastic Lagrangian systems in the sense of [6].

متن کامل

N ov 2 00 6 Inviscid limit for damped and driven incompressible Navier - Stokes equations in R 2

We consider the zero viscosity limit of long time averages of solutions of damped and driven Navier-Stokes equations in R 2. We prove that the rate of dissipation of enstrophy vanishes. Stationary statistical solutions of the damped and driven Navier-Stokes equations converge to renormalized stationary statistical solutions of the damped and driven Euler equations. These solutions obey the enst...

متن کامل

Global well-posedness for the Lagrangian averaged Navier-Stokes (LANS-alpha) equations on bounded domains

We prove the global well-posedness and regularity of the (isotropic) Lagrangian averaged Navier{Stokes (LANS-¬ ) equations on a three-dimensional bounded domain with a smooth boundary with no-slip boundary conditions for initial data in the set fu 2 Hs \H1 0 j Au = 0 on @« ; div u = 0g, s 2 [3; 5), where A is the Stokes operator. As with the Navier{Stokes equations, one has parabolic-type regul...

متن کامل

O ct 2 00 5 Navier - Stokes equations : almost L 3 , ∞ - case

A sufficient condition of regularity for solutions to the Navier-Stokes equations is proved. It generalizes the so-called L 3,∞-case.

متن کامل

Global regularity of the 4D restricted Euler equations

We are concerned with the critical threshold phenomena in the Restricted Euler (RE) equations. Using the spectral and trace dynamics we identify the critical thresholds for 3D and the 4D restricted Euler equations. It is well known that the 3D RE solutions blow up. Projected on the 3-sphere, the set of initial eigenvalues which give rise to bounded stable solutions is reduced to a single point,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008